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Abstract 

In order to study accidental degeneracies of Bloch 
waves in non-centrosymmetric crystals, many-beam 
dynamical effects in high-energy electron diffraction 
from sphalerite F43m ZnS have been observed. Several 
critical-voltage effects due to accidental degeneracies, 
which were created by projected mirror or rotation 
symmetries, were observed at various crystallographic 
orientations. Diffraction phenomena very similar to 
critical-voltage effects were also observed at the non- 
centrosymmetric projections. These phenomena were 
discussed using the second Bethe approximation. By the 
analysis of experimentally measured critical voltages, 
the structure factors for the 220 and 200 reflections 
were determined accurately and discussed in terms of 
the charge rearrangement caused by ionization. 

1. Introduction 

The atomic scattering factors for electrons are more 
sensitive to the distribution of outer electrons of an atom 
than those for X-rays, as is elucidated by the Mott 
relation, 

f l ( $ )  .._ (me2 /2h2)[Z _ f X(s)]/s2 ' 

where s =  sin0/2, 0 is the Bragg angle, 2 is the 
wavelength of an electron, Z is the atomic number and 
ffl(s) and fX(s) are the scattering factors for electrons 
and for X-rays, respectively. This advantage in 
sensitivity has been exploited through structure-factor 
refinement based on convergent-beam electron diffrac- 
tion (for a recent review, see Spence & Zuo, 1992). 
Measurement and analysis of the critical-voltage effect, 
which was originally studied in Kikuchi patterns, yield 
accurate structure factors for low-order reflections 
(Watanabe, Uyeda & Kogiso, 1968), thus revealing 
information about the ionic state or bonding charge 
distribution in crystals. In a recent study, we refined the 
structure factors for rutile-type SnO2 by measuring the 
critical-voltage effect and interpreted the results in 
terms of the ionized state of the crystal (Matsuhata, 
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Gjonnes & Tafto, 1994). Bonding charge distributions 
in intermetallic compounds have been determined by 
Fox & Tabbernor (1991) and Fox (1993) from the 
critical voltages measured using a high-voltage electron 
microscope. 

Most applications of the critical-voltage effect have 
been based on measuring systematic rows of reflections, 
which then restrict the method to high-voltage instru- 
ments. By adding the use of Bloch-wave degeneracies in 
non-systematic diffraction conditions (Gjonnes & 
Hoier, 1971) and at zone-axis orientations (Shannon & 
Steeds, 1977), a wider range of critical voltages can be 
measured within the commonly used range of accel- 
erating voltages. The potential for the use of this 
method would then be increased considerably. 

Such an accidental Bloch-wave degeneracy, which 
defines the condition for a critical voltage, can be 
derived analytically in the three-beam approximation. 
The phase invariant, namely ~, - ~0_h + ~0 s + ~ - s  
-- nzr, which is in general satisfied for centrosymmetric 
crystals, is seen to be required for an accidental 
degeneracy to occur in the three-beam case (e.g. see 
Kambe, 1957; Marthinsen, Matsuhata, Hoier & 
Gj~nnes, 1988), where tp h is the phase angle of the 
structure factor of the reflection h. In a previous study, 
we extended the analysis to a four-beam approximation 
in which the degeneracy condition is expressed as a 
relationship between structure factors and excitation 
errors and is written in the form C -'2 + 4pqt = 0 (see 
Appendix A). However, for non-centrosymmetric 
crystals, this relationship is satisfied only in special 
cases. Examples include when mirror planes or rotation 
axes of even order are present or when the zone-axis 
projection is centrosymmetric with negligible influence 
from higher-order Laue zones. Moreover, Gevers, 
Serneels & David (1974, 1975) and Serneels, David 
& Gevers (1975) predicted that, if the deviation from 
centrosymmetry is small, intensity minima will still 
appear in a manner similar to the critical-voltage effect. 
This may be called the pseudo-critical-voltage effect. 

Here we report the observation of dynamical effects 
that are responsible for the critical-voltage and pseudo- 
cr_itical-voltage effects using non-centrosymmetric 
F43m (No. 216) sphalerite ZnS as a representative 
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crystal. The sphalerite structure has weak reflections, 
which depend on the difference between the scattering 
factors for zinc and sulfur. These reflections are 
sensitive to the charge transfer from Zn to S, which 
will be more marked in II-VI semiconductors (e.g. 
ZnS) than in III-V semiconductors. 

In this paper, we will begin by surveying the various 
non-systematic critical-voltage effects and pseudo- 
critical-voltage effects in sphalerite ZnS, taking into 
account the symmetry of the crystal and referring to the 
diffraction conditions for non-systematic critical-volt- 
age effects described in the previous paper (Matsuhata 
& Gjannes, 1994). Subsequently, we will discuss the 
analytical expressions for the dynamical three- and four- 
beam approximations for the non-centrosymmetric 
cases. Lastly, we will analyse some of the measured 
critical voltages using many-beam computations to 
derive accurate structure factors. The analysis results 
for the critical voltages will be compared with other 
results to discuss scattering factors of the ionized state. 

2. Experimental procedure 

Thin specimens of sphalerite ZnS were obtained by 
the standard Ar-ion etching of polycrystals. The speci- 
mens were observed at the [001], [1_11], [112], [102], 
[013] and [110] projections. The F43m st~cture has 
mirror symmetry about the (110) planes and 4 inversion 
axes parallel to the (100) directions. The combination of 
this mirror symmetry with the ~, inversion axes creates 
various Bloch-wave symmetries, which in turn generate 
several accidental degeneracies in the above projec- 

tions. Convergent-beam electron diffraction (CBED) 
patterns were taken at various accelerating voltages 
with a minimum step of 1 kV using JEM-2000FX and 
JEM-4000FX analytical-type electron microscopes. The 
critical voltages were measured by monitoring the 
vanishing intensity and the reversal of the asymmetric 
intensity profiles in the convergent-beam patterns. The 
accelerating voltage of the 2000FX microscope was 
calibrated using measurements of Kikuchi-line inter- 
sections (Haier, 1969). 

Considering up to approximately 250 beams, we 
carried out many-beam dynamical computation based 
on the Hermitian diagonalization without considering 
absorption effects. The symmetries of the Bloch 
waves were described using the notation introduced 
by Cochran (1952) and discussed further by Gj~nnes 
& Tafta (1993). The BSW (Bouckaert, Smoluchowski 
& Wigner) notation introduced by Shannon & Steeds 
(1977) for Bloch-wave symmetry and the locations in 
two-dimensional reciprocal space were also used. 

The approximate diffraction conditions used in 
observing the dynamical effects are summarized in 
Fig. 1, where the dashed-line circles indicate the 
Laue circles and the dots indicate the reciprocal- 
lattice points. 

3. Experimental  results and analysis 

3.1. Dynamical  effect at a centrosymmetric zone axis 

3.1.1.  242 reflection at the [111] projection. Strictly 
speaking, the symmetry of the zeroth-order Laue zone 
at the [111] zone axis is 3m with the mirror symmetry 
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The 660 reflection at the Bragg position at the 
[111] projection. (c) The 600 reflection at the 
Bragg position at the [001] projection. (dl) 
The 260 and 620 reflections near the Bragg 
position at the [001] projection. (d2) The 260 
and 440 reflections near the Bragg position. 
(el) The 260 and 400 reflections near the 
Bragg position. (e2) The 260 and 260 
reflections near the Bragg position. ( f )  The 
260, 440 and 220 reflections near the Bragg 
position. (g) The 442 reflection near the 
Bragg tx2sition at the__[102] projection. 
(h) The 440, 531 and 111 at the Bragg 
position at the non-c_e_ntrosymmetric [112] 
projection. ( i)The 531 reflection at the 
Bragg position at the non-centrosymmetric 
[013] projection. (j) The non-systematic 
pseudo-critical-voltage_effect at the [110] 
projection, where the 113 and i 13 reflections 
are approximately on the Laue circle. 
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about the (110) plane. However, this symmetry can be 
taken to be centrosymmetric 6 m m  since the many-beam 
dynamical calculation shows that the anharmonic 
contribution to the temperature factors of reflections 
in the zeroth-order Laue zone is negligible. Fig. 2 
shows the non-systematic critical-voltage effect on the 
242 reflection for the configuration in Fig. l(a) at 102, 
142 and 203 kV. A pair of intensity absences, which 
were due to an accidental degeneracy between Bloch 
waves 3 and 4, occurred in the 242 convergent-beam 
disc at 102 kV. While one Bloch wave is symmetric (i.e. 
m, o r  ,~1 in BSW notation) on the ,~ line, the other 
is antisymmetric (i .e.  m' or ~2). With increasing 
accelerating voltage, these points move towards the 
centre of the 242 convergent-beam disc, namely along 
the 22 line towards the M point. The dispersion surfaces 
show 2ram symmetry with respect to the M point. At 
142 kV, the points of intensity absence merge at the M 
point (seen in the centre of the 242 disc), corresponding 
to a degeneracy between the 2mm- and 2're 'm-type (or 
M 1 and M4) Bloch waves. These symmetries on the M 
point satisfy the compatibility relation with those of the 
Bloch waves along the 27 lines (see, for example, Bums, 
1977). At higher accelerating voltages, the intensity 
absence is no longer observed (Fig. 2c). 

Use of a four-beam approximation (Matsuhata & 
Gjonnes, 1994) gives the positions of the two accidental 
degeneracy points measured from the M point as 

8 = 4- ( 1 / g ) ( { p  2 - f f [ 2 a  2 - -  b 2 - ab)/b]}  

x [p2 _ fl(a - b)])1/2, (1) 

where p2 = ( h  2 _ g2)/4, h = 242, g = 202, a = U2~ 0, 
b = U2, h and /~ = 1 + e E / m o  c2. E is the accelerating 
voltage, m 0 is the electron rest mass, e is the charge of 
the electron and c is the speed of light. 8 is the position 
parameter of the projected centre of the Ewald sphere 

onto the zeroth-order Laue zone. The critical voltage E c 
at the M point is given by 

E c = (mo c2 /e ){[ (b /2a  2 - b 2 - ab)]p 2 - 1 }. (2) 

By measuring either the distance between the two 
degeneracy points in the convergent-beam disc or the 
critical voltage at which the degeneracy disappears at 
the M point, we can obtain a relation between the 
structure factors. Equation (1) indicates that the 
degeneracy positions become even more sensitive to 
the structure factor as the degeneracies approach the M 
point. The critical voltage was measured to be 
153 (5)kV at the M point and was analysed using 
many-beam dynamical calculations involving 72 beams. 
Using temperature factors obtained by Cooper, Rouse 
& Fuess (1973) and higher-order scattering factors 
obtained by Doyle & Turner (1968), we determined the 
structure factor for the 220 reflection to be 
U220 =0.03822(12)~,  -2. This value is 0.7% larger 
than that calculated from the neutral state by Doyle & 
Turner (1968). 

3.1.2. 660  reflection at  the [111] projec t ion .  _An 
accidental degeneracy is observed also in the 660, 422, 
242, 000 CBED discs in the [111] orientation. The 
diffraction condition for this accidental degeneracy is 
shown in Fig. l(b). Fig. 3 shows large-angle 
convergent-beam diffraction (LACBED) patterns of 
these reflections taken at 203kV. The absence in 
intensity contrast occurred for both the 660 and 
000 reflections, and the reversal of the asymmetric 
intensity profile was observed for both the 242 and 422 
reflections. The degeneracy is between Bloch waves 9 
and 10 on the T line. Note that these are exact accidental 
degeneracies even if the higher-order Laue zones are 
included, since on the T line the Bloch-wave symmetries 
m and m' (or T 1 and T2) are preserved. Using the three- 
beam approximation introduced by Gjonnes & Hoier 

Fig. 2. Non-systematic critical-voltage effect in the 2,$2 reflection observed at the [111] zone axis at accelerating voltages of (a) 102, (b) 142 and 
(c) 203 kV. At 102 kV, the absence in intensity is observed at two different positions. At 142 kV, the points of the in~nsity absence move to the 
centre of the 242 disc. At 203 kV, the intensity absence disappears. At the corresponding positions in the 220 and 022 convergent-beam discs, 
the reversal of the asymmetric intensity profile occurs. 
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(1971), the diffraction condition for the accidental 
degeneracy is given by the excitation error s4~ ~, as 
follows: 

s4~ ~ = (1 + eE/moc2)[ (a  2 -- b2)/2Kb], (3) 

where a = U422, b = U660 and K is the absolute value of 
wave vector of an electron in a crystal. With increasing 
accelerating voltage, the positions of the accidental 
degeneracy points move along the T line. Unfortu- 
nately, these positions are not sensitive to the structure 
factors within the voltage range available to conven- 
tional electron microscopes. 

3.1.3. 600  ref lect ion_ a t  the  [001]  p ro j ec t i on .  
This projection has a 4 inversion axis and mirror 
symmetries about the (110) planes. The projected 
symmetry is 4 m m .  We inspected several configurations 
in this projection to investigate the possibility of 
structure-factor determination of the weak reflections 
of h + k + l = 4n + 2 type. Fig. 4 shows the LACBED 
patterns for the 600 reflection taken for the configura- 
tion given in Fig. l(c), at 100, 200 and 300kV. We 
obtained the critical voltage from the intensity absence 
at the point indicated by the arrow in Fig. 4. This 
critical voltage was determined to be 200 (10)kV. The 
corresponding accidental degeneracy occurs between 
Bloch waves 7 and 8. Below this critical voltage, the 
symmetry of Bloch wave 7 is 2ram and that of Bloch 
wave 8 is 2'ram' (or X 1 and X 3, respectively, in BSW 
notation) at the X point. Along the Y line, the Bragg 
condition is satisfied for the 600 reflection and the Bloch 
waves have m and m' symmetries (YI and Y2). At the 

critical voltage, an interchange of the symmetries takes 
place at the X point. Above the critical voltage, a pair of 
accidental degeneracy points is created and moves along 
the Y lines, with the corresponding reversal of the 
Bloch-wave symmetries along the Y line owing to the 
compatibility relation for Bloch-wave symmetry. The 
accidental degeneracy at the X point is due mainly to the 
dynamical interactions between the 000, 220, 220, 
420 420 and 600 reflections. With a six-beam 
approximation, the eigenvalues for 2 m m  and 2 'mm'  
symmetries are given by 

4Ky2,,, n = 2 K s  a + C + E + B + D 

- [(2Ks a + C + E + B - D)  2 

+ 8(h + B)2] 1/2 (4a) 

4Ky2 , ,~ ,  = 2 K s  a + C - E - B - D 

- [(2Ks A + C - E - B + D)  2 

+ 8(A -- B)2] 1/2, (4b) 

where s a is the excitation error of the 220 reflection, 
A=/~U22 o, B=/~U42 o, C=~U040,  D=/~U600, 
E =/~ U200 and/~ = 1 + e E / m o  c2. 

Fig. 3. Accidental degeneracies between Bloch waves 9 and 10 in 
large-angle convergent-beam patterns of the 660, 2]2,422 and 000 
reflections taken at 203 kV. The intensity absence is observed in the 
000 and 660 reflections, and the rever_sal of the asymmetric intensity 
profile is observed in the 2]2 and 422 reflections. 

Fig. 4. Large-angle convergent-beam patterns in the 600 reflection for 
the [O01l orientation taken at nominal accelerating voltages of 100, 
200 and 300 kV. The arrow indicates the intensity absence. 
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An accidental degeneracy occurs when the two 
eigenvalues are equal, i.e. Y2,,~ = Y2,,,~. The six- 
beam approximation above and also many-beam 
computations show that this critical voltage depends 
strongly on the structure factors for the 220 and 420 
reflections, and less on those for the 200 and 600 
reflections. Many-beam calculations based on the 
neutral atomic scattering factors by Doyle & Turner 
(1968) gave a value of 167 kV for the critical voltage at 
the X point. This value is lower than the experimental 
value of 200 (10) kV. We shall discuss this discrepancy 
in §5 in terms of the ionization of S and Zn. 

3.1.4. 260 reflection at the [O01] projection. A series 
of intensity absences was observed in the 260 reflection. 
Fig. 5 shows the bright-field and dark-field LACBED 
patterns for the [001] zone axis at 102,203 and 400 kV. 
Several features in the patterns have characteristics 
similar to a symmetrical three-beam case (see Kambe, 
1957; also Tafte & Gjonnes, 1985). For example, the 
two split segments marked by A and B in the patterns are 
associated with the simultaneous excitation of the 260 
and 620 reflections on the Z line or, alternatively, of the 
260 and 440 reflections. Here, we will discuss mainly 
the right-hand side of the LACBED patterns for 
simplicity. The intensity on the opposite side of the 
dark-field LACBED patterns can be interpreted using 
the reciprocity theorem in electron diffraction (Pogany 
& Turner, 1968). The segment A, which appears with a 
weak intensity at 102 kV, originates from Bloch waves 
11 and 12. At the intersection with the 27 line, at the 
position marked by A', these two Bloch waves are 
degenerate at any accelerating voltage possessing the 
symmetries m and m' (or 271 and 272, respectively). The 
strong intensity in segment B is due to the two Bloch 
waves 9 and 10. These waves both have m-type 
symmetry on the 27 line, but they have opposite signs 

(J~* (j) 
for C O C2J6~ ) . W h e n  the accelerating voltage was 
increased to 203kV, the intensity in segment A 
increased, as seen in Figs. 5(c) and (d), but an intensity 
absence owing to an accidental degeneracy occurred in 
segment B. 

The non-systematic critical voltage for segment B can 
be expressed analytically using a five-beam approxima- 
tion, either with the 260 and 620 reflections approxi- 
mately on the Laue circle and the 040 and 400 
reflections inside the circle or with the 260 and ZI40 
reflections approximately on the Laue circle and the 220 
and 260 reflections inside the circle for the opposite side 
of the LACBED pattern. These diffraction conditions 
are illustrated in Figs. l (dl)  and (d2). The resulting 
expression for E c is 

E c = (moc2/e)({bd(a + d)/[(a + d)2(Eb 2 - d 2) 

- 2b2d 2 - bcd(a + d)]}g 2 - 1). (5a) 

The projected position 8 c on the zeroth-order Laue zone 
for the centre of the Ewald sphere is 

,~ = ((1 + eE/moc2){[b(a + d) 2 - cd(a + d) - 2bd 2] 

× [2d(a + d)]-l}(1/g 2) + 1)g, (5b) 

where a=U220, b=U40o, c=U440, d=U620 and 
g = g220- 

Many-beam dynamical computations show that this 
critical-voltage effect creates a pair of movable 
accidental degeneracy points between Bloch waves 9 
and 10 on the B segment. The direction of motion of the 
accidental degeneracy points with increasing voltage 
around this critical voltage is illustrated by the arrows in 
Fig. 5(g). Above this critical voltage, one of the 
accidental degeneracy points moves along the B 
segment of the 260 reflection and reaches the 400 line 
at the point marked by the solid square in Fig. 5(h). The 
structure of the three-beam dispersion surface around 
the 400 line, owing to simultaneous excitation of the 
260 and 400 reflections, is similar to that around the 27 
line discussed above. An accidental degeneracy always 
exists at the point B' between the branches of 
symmetries m and m' (,41 and ,42). The moving 
accidental degeneracy point is incorporated into this 
accidental degeneracy point. 

A further increase in the accelerating voltage causes 
an intensity absence within segment C as shown in Figs. 
5(e) and ( f ) .  This critical-voltage effect at the 
intersection with the 400 line is again due to the 
degeneracy between the two symmetric Bloch waves but 
their signs for C~J)*C (j) 260 are opposite. This accidental 
degeneracy can be determined analytically using a five- 
beam approximation, either with the 260 and 400 
reflections approximately on the Laue circle and the 040 
and 440 reflections inside the circle or with the 260 and 
260 reflections approximately on the Laue circle and the 
220 and 220 reflections inside the circle for the left-hand 
side of the LACBED pattern. The diffraction conditions 
are shown in Figs. l(el)  and (e2). The resulting 
expressions for E c and for the projected position of 
the centre of the Ewald sphere are given by 

E¢ = (moc2/e)({4ad(b + c)/[(b + c)2(3a 2 -d 2) 

- 4 a 2 d  2 - 2abd(b + c)]}h 2 - 1), (6a) 

3c = ((1 + eE/moc2){[a(b + c) 2 - bd(b + c) - 2ad 2] 

x [2d(b + c)] -1 }(1/h 2) + 1)h, (6b) 

w h e r e  a = U220, b : U400, c : U440, d = U620 a n d  

h =  g020. 
The diffraction geometry for this critical-voltage 

effect is similar to that observed in Cu at the [001] zone 
axis (Matsuhata & Gjennes, 1994). The direction of 
motion of degeneracy points around this critical voltage 
with increasing accelerating voltage is shown schema- 
tically in Fig. 5(h). Many-beam calculations indicate 
that one of the pair of degeneracy points moves along 
the C segment towards the centre of the convergent- 
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beam pattern of the 260 reflection. The corresponding 
diffraction condition is shown in Fig. l ( f ) ,  where the 
260, 440 and 220 reflections are excited simultaneously. 
A high-voltage microscope is required to observe the 
accidental degeneracy at the central part of the CBED 
pattern. The intensity absences in segments A, B and C 

of the 260 LACBED patterns in Fig. 5 show how the 
accidental degeneracy points move around the 4mm 
symmetry [001] zone axis. 

3.1.5 [102] projection. We have examined the 
influence of weak reflections of the h + k + l = 4n + 2 
type on accidental degeneracies at various projections. 

v //~v 

\ / 

260 

~h~ 

./'\/\ 

// 

/ 

Fig. 5. Bright-field and 260 dark-field large-angle convergent-beam patterns taken at 102kV (a and b, respectively), at 203kV (c and d, 
respectively) and nominally at 400kV (e and f,  respectively) in the [001] zone axis. A, B and C in the figures denote the intensity segments of 
the 260 reflection. The letters with a prime indicate the locations of absence in contrast owing to an accidental degeneracy, which occurs at any 
accelerating voltage between m-type and m'-type Bloch waves. The absences in intensity contrast owing to moving accidental degeneracies are 
seen in segment A at 102 kV, in segment B at 203 kV and in segment C at 400 kV. (g) Intensity segment map of the corresponding region of the 
260 LACBED pattern. The directions of motion of accidental degeneracies around the first critical voltage is indicated by arrows. The parts of 
the 260 intensity segments are denoted by A and B. The solid circles denoted by A' are the points where the accidental degeneracies are located 
for any accelerating voltage. (h) The direction of motion of accidental degeneracies around the second critical voltage. The parts of the 260 
intensity segments are denoted by B and C. The solid squares denoted by B' are the points where the accidental degeneracies are located for 
any accelerating voltage. 
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The effect was anticipated at the [102] projection, in 
which h, k and l are all even for reflections in the 
zeroth-order Laue zone. Fig. 6 shows a pair of 
intensity absences in the 442 LACBED pattern at the 
[102] projection associated with accidental degeneracy. 
The 422, 020 and 442 reflections shown in Fig. l(g) 
play an important role for the dynamical interaction, 
where the 020 and 442 are weak reflections of the 
h + k + l = 4n + 2 type. With increasing accelerating 
voltage, these degeneracy points move towards the 
centre of the 442 convergent-beam pattern. The position 
of the degeneracy points can be described by equations 
similar to (3). This accidental degeneracy is influenced 
by the 020 weak reflection. However, it does not give a 
satisfactorily accurate U200 value in this accelerating 
range. A more accurate value may be obtained using 
higher accelerating voltages. 

3.2. Dynamical effect at a non-centrosymmetric zone 
axis 

3.2.1. [112] projection. Even though the [112] 
projection is non-centrosymmetric, it has mirror sym- 
metry about the (110) plane. Thus, when the projected 
centre of the Ewald sphere is on the 2? line or on the C 
line, Bloch waves can still be classified as being m or 
m'. Accidental degeneracies between these different 
types of Bloch waves (i.e. m or m') occur. Fig. 7 
shows the absence in intensity in both the 531 and 440 
CBED patterns under the [112] projection at 82 kV. The 
diffraction condition for this__degeneracy is shown in 
Fig. l(h). The 531, ,~40 and 111 reflections are on the 
Laue circle. The 402, 311, "220 and i3i reflections are 
inside the circle. Figs. 8(a) and (b) show the calculated 
dispersion surfaces for Bloch waves 5, 6, 7 and 8 at 50 
and 120 kV, respectively, along the 2? lines, the X point 
being in the middle. The accidental degeneracy between 
Bloch waves 7 and 8 occurs at the X point at 50 kV, and 
that between Bloch waves 5 and 6 occurs at 70 kV. The 
CBED discs in Fig. 7 were taken at the voltage above 
the two critical voltages. The Bloch waves can be 

characterized by their symmetry, namely m or m' along 
the 27 line, and m* or m*' along the D line (for this 
notation see K~istner, 1987). We may introduce 
symmetric symbols such as 2*m'm* to describe Bloch 
waves at the X point. However, we shall only apply the 
labelling m', m, m' and m to Bloch waves 5, 6, 7 and 8 
for the case of 120 kV, respectively, since the use of m* 
or m*' also depends on how one normalizes the 
eigenvectors. To the left-hand side of the X point in 
the 440 disc, the main intensity contributions come from 
Bloch waves 5 and 6, whereas Bloch waves 7 and 8 are 
important for the right-hand side. The intensity absence 
on the left-hand side is mainly associated with the 
accidental degeneracy between Bloch waves 5 and 6, 
while that on the right-hand side results from the 
accidental degeneracy between Bloch waves 7 and 8. In 
the 531 pattern, all four Bloch waves contribute 
symmetrically about the X point. The many-beam 
dynamical calculations indicate that the degeneracy 
between Bloch waves 5 and 6 at the X point depends 
mainly on U220 and U440, whereas the degeneracy 
between Bloch waves 7 and 8 depends strongly on U311 
as well. Both critical voltages depend weakly on Ull I. 
The influence of the antisymmetric component of the 
anharmonic temperature factors estimated by Moss, 
McMullan & Koetzle (1980) on these critical voltages is 
concluded to be negligible by the dynamical computa- 
tions. 

3.2.2. [013] projection. The projection along the 
[013] zone axis is neither centrosymmetric nor mirror 
symmetric. Hence, the four-dimensional dynamical 
matrix cannot satisfy the degeneracy condition 
C 2 +__4pqt = 0. However, an intensity weakening in 
the 531 reflection is apparent in Fig. 9 at the diffraction 
condition shown in Fig. 1(i). When the accelerating 
voltage was increased, a pair of weak intensity points 
moved towards the centre of the 531 CBED disc, then 
combined there and disappeared. This appearance is 
very similar to the critical-voltage effect but the Bloch- 

Fig. 6. Large-angle convergent-beam pattern on the 442 reflection for 
the [102] projection taken nominally at 350kV at the diffraction 
condition shown in Fig. l(g). The arrows indicate the intensity 
absence. 

Fig. 7. Convergent-beam patterns of the 531 and 3,40 reflections 
observed at 82kV for the [112] orientation for the diffraction 
condition shown in Fig. l(h). The arrows indicate the intensity 
absence. 
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wave branches do not touch because of the non- 
centrosymmetry (Gevers et al., 1974, 1975; Serneels 
et al., 1975). Therefore, this may be called a pseudo- 
critical-voltage effect. 

In this case, the 400, 131 and 531 reflections play an 
important role in the dynamical interaction. The 
structure factors of all these reflections, except the 
400 reflection, are complex numbers. With Doyle & 
Turner's (1968) neutral scattering factors, the phase 
invariant__~ for the three beams, either among the 0_00_, 
131 and 531 reflections or among the 000, 400 and 531 
reflections, is given by ~oi~ 1 + ~o~0 o + q953 i = 2.035~r, 
which is nearly equal to 2zr. Therefore, an appearance 
similar to that of the critical-voltage effect is observed. 

Many-beam dynamical computations show that with 
an increasing accelerating voltage a pair of the small 
gap points of the dispersion-surface branches between 
Bloch waves__ 5 and 6 moves along the intensity segment 
of the 531 reflection towards the centre of the 531 
CBED disc. A pair of the small gap points combines 
there and disappears. The calculated results show that 
the interchanges between the magnitudes of the excita- 
tion amplitudes and between the absorption parameters 
of the two__ Bloch-wave branches occur at the centre part 
of the 531 CBED disc. However, there is no contact 
between the dispersion surfaces of Bloch wave branches 
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Fig. 8. Calculated dispersion surfaces of Bloch waves 5, 6 7 and 8 
along the ,U line (along the 440 Bragg position) with the X point in 
the middle of the ~7 line at (a) 50kV and (b) 120kV. The solid line, 
dashed line, dot-dashed line and dotted line indicate Bloch waves 5, 
6, 7 and 8, respectively. 

5 and 6. The diffraction condition at the centre of the _ _  

531 CBED disc corresponds to the situation that the 
projected centre of the Ewald sphere is at the 2* point. 
A theoretical pseudo-critical voltage can be defined as 
being the accelerating voltage at which the gap between 
the two Bloch-wave branches becomes minimal at the 2* 
point. With this definition, the pseudo-critical voltage is 
calculated to be 269 kV. 

Since there is no degeneracy between the two 
branches of the dispersion surfaces in the case of the 
pseudo-critical-voltage effect, the diffracted intensity 
around the small gap positions of the dispersion surfaces 
depends also on the crystal thickness. Computer fitting 
of the experimental rocking curves together with energy 
filtering of the diffracted electron beam can be used to 
obtain accurate values for the structure factors. 

3.2.3. [110] projection. Buxton, Loveluck & 
Steeds (1978) predicted a critical voltage on the ,4 
line at the [110] projection for centrosymmetric Si. 
This critical-voltage effect was observed by Matsu- 
hata & Steeds (1986) for the diffraction condition in 
which the l i3  and 113 reflections were approxi- 
mately on the Laue circle. At this critical voltage, 
the accidental degeneracy occurs between Bloch 
waves 4 and 5. When the projected centre of the 
Ewald sphere is on the ,4 line, both Bloch waves 

Fig. 9. Observed pseudo-critical-voltage effect on the 531 reflections 
at the [013] projection at (a) 102kV and (b) nominally at 280kV. 
The arrows indicate intensity minima. 



694 HIGH-ENERGY ELECTRON DIFFRACTION 

have symmetry m but they have opposite signs for 
C ~j~*C~) Manv-beam dvnamical comnutations 0 113" . . a . J r 
show that with increasing voltage a pair of accidental 
degeneracy points moves in a region of general points, 
reaches the ,4 line, combines there and disappears. 

An appearance similar to that of the critical-voltage 
effect in Si is observed in the LACBED patterns of ZnS 
at the [110] projection. The patterns in Fig. 10 were 
taken at 82, 102, 122 and 142kV. Reversal in the 
asymmetric intensity profile occurred in both the bright- 
field and the 002 and 002 dark-field patterns at the 
positions indicated_by the arrows. In ZnS, the [110] 
projection has a (220) mirror plane. When the projected 
centre of the Ewald sphere is on the A line, Bloch waves 
can be classified as being m or m' in symmetry. 
However, they are not m or m' on the E line, since 
(002) is not a mirror plane. This pseudo-critical-voltage 
effect originates from the absence of mirror symmetry 
in the (002) plane. Fig. 11 shows the dispersion surfaces 
and excitation amplitudes for the two Bloch waves 
corresponding to the patterns shown in Fig. 10 and 
indicates no degeneracy between the two dispersion 
surfaces. Bloch waves 4 and 5 are of symmetry m on the 
,4 line but t h e  C 0(j)* Cli  3(j) for j = 4 and 5 are complex 
numbers. 

4. Dynamical effects in non-centrosymmetric 
crystals 

4.1. Dynamical effect in a systematic three-beam case 

Quantitative analysis of the observed critical-voltage 
effects relies on many-beam dynamical computations. 
However, a qualitative discussion of the dynamical 
effect in relation to non-centrosymmetric cases may be 
obtained from approximate analytical expressions. The 
perturbation expressions derived by Gevers et al. 
(1974, 1975) for the critical-voltage effect in non- 
centrosymmetric crystals appear somewhat cumber- 
some. Here, we shall apply the second Bethe approxi- 
mation to some simple non-centrosymmetric cases. (For 
a discussion on the range of the validity of the 
approximation, see Zuo, Hoier & Spence, 1989.) 

In the dynamical effect of a systematic three-beam 
case with the second-order reflection at the Bragg 
position, the second Bethe approximation reduces the 
three-beam dynamical matrix to a quasi-two-beam 
matrix given by 

[ - f f  lUgl21g 2 - 2 K y  

#U2g - ~2 ~ 1 g 2  

~U_2g _ ~ 2  U2g/g2 ] 
-~21UglE/g 2 - 2 K v  J ' 

(7) 

Fig. 10. Observed pseudo-critical- 
voltage effect at the [110] zone 
axis. The LACBED patterns were 
taken at (a) 82, (b) 102, (c) 122 
and (d) 142kV. The left column 
shows the 002 dark-field, the 
middle column shows the bright- 
field, and the right column shows 
the 002 dark-field patterns. 
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where # is the relativistic correction factor. The 
eigenvahes 2Ky in (7) for the two Bloch waves are 
given by 

2Ky = -/~2lUg[2/g2 + [(~U_2g - -  f12 U2g/g2) 
x (#u~, - #~ U~l~)]~/~. (8) 

The corresponding eigenvectors can be written in 
matrix form as 

[ A A exp(-iO) ] 
A exp(i0) - A  ' 

where 

0 = arg(/3U2~ - I32 U2/g 2) 
= arctan[I U2g I sin ~/(I  U2gl cos qo - /~ l  Ugl2/g2)] + 2~og. 

(9) 

= tpEg- 2~og is a phase invariant of the three 
reflections, where tpg is a phase angle of a structure 
factor for the reflection g. For simplicity, 9g can be 
taken to be zero by choosing an appropriate origin for 
the unit ceil. If we normalize the eigenvectors by 

assuming the two-beam approximation, A becomes 
1/(2) 1/2. The three-beam normalization condition may 
be written by expressing Cg as - (UgCo + U_gC2g)/g 2. 

In centrosymmetric crystals, Ug = U g, UEg = U_Eg, 
and 0 -- 0 or rr. Accidental degeneracy occurs when off- 
diagonal elements in the two-dimensional matrix given 
by (7) are zero. The critical voltage E c is given by 

E c = (moc2/e)[(U2g/Uff)g 2 - 1]. (10) 

Although E c in (10) derived using the second Bethe 
approximation is lower than Ec calculated using the 
exact three-beam case (see, for example, Spence & 
Zuo, 1992), in what follows we shall use this 
approximation in our discussion for simplicity. 

As can be seen from (9), below the critical voltage the 
eigenvector components Co and C2g belonging to the 
lower dispersion surface branch have opposite signs, 
which corresponds to an antisymmetric Bloch wave, 
whereas the two components of the upper branch have 
the same sign, which corresponds to a symmetric Bloch 
wave. Above the critical voltage, this symmetry relation 
is reversed. 
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Fig. 11. Calculated dispersion surfaces, absorption parameters, excitation amplitudes and rocking curves for crystal thickness of 200 nm (solid 
lines) and 300nm (dashed lines) for thickness along the A line at (a) 85, (b) 95, (c) 105 and (d) 115 kV for the pseudo-critical voltage observed 
at the [110] projection. Solid lines, dashed lines and dash-dotted lines correspond to Bloch waves 3, 4 and 5, respectively. The calculations 
included 114 beams. An arrow on the dispersion-surface curve shows the location of the pseudo-critical voltage. Arrows on the absorption- 
parameter curves show the interchange of absorption parameters. Arrows on the rocking curves show the intensity-minima positions. 
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In non-centrosymmetric crystals, U~ = U_g and 
U~g = U_zg. If • is small or near 2nrr, the minimum 
gap between two Bloch-wave branches occurs at the 
accelerating voltage Emg given by 

Emg = (moc2/e)({[3lU2gl cos • 4- IU2gl(1 - 9sin 2 q~)l/2] 

× (41UglE) - l }g  2 - 1) .  (11) 

According to this equation, as ¢~ increases, Emg 
decreases and the minimum gap becomes more shallow. 
Ems will eventually vanish when the quantity within the 
square root in (11) becomes negative. This equation 
shows that Eml ~ depends on the phase invariant ¢~. 

Let us consider the Bloch-wave symmetry around the 
minimum gap of the dispersion surface. The variation of 
the denominator in the argument of the arctan in (9) 
around the pseudo-critical voltage corresponds to the 
reversal of Bloch-wave symmetry in the centrosym- 
metric case. In the non-centrosymmetric case, as the 
voltage increases, the term ]arg(~0 J)* ~ ) ) ]  for the lower 
branch decreases but that for the upper branch 
increases. The denominator in the argument of the 
arctan in (9) decreases and becomes zero at 

-.-g21U2glcos~/lUgl 2, resulting in 0 =  rr/2. The 
change in the character of the Bloch waves corresponds 
to a change in the arctan around 0 =  zr/2. The 
accelerating voltage at which the change of the 
Bloch-wave character takes place is slightly different 
from Emg. If we take an arbitrary origin for the unit cell, 
~og in (9) is not zero. The change in 0 occurs similarly to 
the case for tps = 0  but 0 is no longer rr/2 when 
fl -- g2lU2g I cos ~ ) / I f  gl 2 . 

4.2. Non-systematic case 

Let us now discuss a non-systematic four-beam case 
for a non-centrosymmetric crystal with the skew- 
diamond configuration, which has been treated 
previously for the centrosymmetric case (Matsuhata & 
Gjonnes, 1994). If we assume that the reflection h is at 
the Bragg condition, the reflections a and b inside the 
Laue circle will have the same excitation error. Even 
when there is no twofold rotation axis in the projection, 
the structure of the dispersion surface will have twofold 
rotation symmetry. If the reflections a and b are weakly 
excited, we may apply the second Bethe approximation 
and reduce the matrix to the two-beam form 

[ (-~2/p2)(IUol 2 + IUbl 2) - 2Ky flU_ h -- 2[J2U_aU_b/p 2 ] 

flu h -- 2fl2UmUb/P 2 (-3/p2)(IUal 2 + IUbl 2) - 2Ky J' 

(12) 
where p2 __ (h  2 _g2) /4  and g = a - b .  The non- 
systematic critical voltage Ec for a centrosymmetric 
crystal is then given by 

E c = (moc2/e)[(Uh/2UaUb)P 2 - 1]. (13) 

The eigenvector matrix can be expressed by a matrix 
similar to (9). For centrosymmetric crystals, an 
interchange between the Bloch waves that have 
symmetries 2 and 2' occurs at the critical voltage in a 
manner similar to the systematic case. Equation (13) 
predicts a considerably lower value than the exact 
four-beam solution. However, for simplicity, we will 
apply the second Bethe approximation. 

In a non-centrosymmetric crystal, the accelerating 
voltage to achieve the minimum gap between the two 
Bloch-wave dispersion surfaces is similar to the system- 
atic case, 

Emg : (moc2/e)({[3lUhl cos ¢' 4- IUhl(1 -- 9sin 2 t~) 1/2] 

x (8lUal IUbl)-l}P 2 -  1). (14) 

If we take ~o,, ~ = 0 for the phases of structure factors 
for the reflections a and b by choosing an appropriate 
origin for the unit cell, the accelerating voltage at which 
the change in Bloch-wave character occurs can be 
described in a manner similar to the systematic three- 
beam case, 

E - -  (moc2 /e ) [ ( IUh l  c o s  ¢ ' / 2 1 U . I  IUbl )P  2 --  1]. (15 )  

It should be noted that the pseudo-critical-voltage value 
defined by the minimum gap between the dispersion 
surfaces is different from the accelerating voltage at 
which the characters of the Bloch waves change. 

5. Rearrangement of the outer electrons 

In this section, we shall discuss the numerical analysis 
of the critical voltages measured experimentally. Of the 
crystal settings for observation of critical voltages 
shown in Fig. 1, the two cases (a) and (c) were used 
to determine the structure factors. We shall interpret 
these measured critical voltages in terms of the 
rearrangement of the outer electrons of the constituent 
atoms. This can be done in several ways: by comparison 
with theoretical calculations of the electronic structure 
of the crystal, by comparison with spherically sym- 
metric scattering factors for ionized states or by 
obtaining adequate structure factors from X-ray diffrac- 
tion experiments through constructing charge-density 
maps. Since we have two independent measurements, 
we shall use the first two approaches, concentrating on 
the determination of the ionic state. 

In theoretical calculations, it is known that the wave 
functions of outer electrons for isolated negative ions 
expand and are unstable, particularly for the doubly 
ionized negative state (see, for example, Schmidt & 
Weiss, 1979; Azavant & Lichanot, 1993). A crystal 
potential or an artificial potential is required. The 
effect of the potentials, therefore, appears in the 
calculated wave functions of the electrons. Fig. 12 
shows the change in scattering factors for electrons 
due to ionization obtained from different models. The 
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curve for S 2- denoted by K = 0.91 was obtained using 
a model by Coppens et al. (1979) and Coppens (1993). 
Using the phenomenological parameter r ,  the contrac- 
tion or expansion of the spherically symmetric 
distribution of the outer electrons can be considered. 
The X-ray scattering factor of S 2- is expressed as 
f~_(sinO/2) = fXc.core(SinO/2 ) + 2fX_electron(SinO/r2) + 
6f~_electron(SinO/r.2), and can then be converted to an 
electron scattering factor. For the orbital scattering 

X , X X factors free-core f~s-electron, f~p-electron o f  S 2-  , those 
calculated by Mann ( 1 9 7 4 ) a n d  summarized in 
International Tables for X-ray Crystallography (1974) 
were used. The curve denoted by A-L was obtained 
assuming the crystal potential of the Li2S ionic crystal 
using an ab initio LCAO-Hartree-Fock calculation 
(Azavant & Lichanot, 1993). The curves for S 2- 
denoted by S-W, R =  1.83 and R =  1.66, were 
obtained using a Hartree-Fock calculation with a 
Watson sphere potential model, where the parameter R 
indicates the radius of the Watson sphere potential in 
• ~, (see Schmidt & Weiss, 1979). The curve for Zn 2+ 
(Doyle & Turner, 1968) is also shown for reference. 

0.I 

0.0 

-0.I 

-0.2 

Z n  2+ 
I 

x---0.91 

Ii / A-L (1993) 

L I/,:'---" 
r i i _s-w(1979)  R- .83 

200 220 400 420 600 
Fig 12. Deviations of scattering factors for the ionized state from the 

neutral state. The deviation of the scattering factor for Zn 2+ is from 
Doyle & Turner (1968), which was obtained by a relativistic 
Hartree-Fock calculation. The deviation of the scattering factor for 
S 2-, denoted by r = 0.91, was obtained from the Coppens model 
(Coppens et al., 1979; Coppens, 1993) using the orbital scattering 
factors tabulated in International Tables for X-ray Crystallography 
by Mann (1974). The curve denoted by A-L is estimated for S 2- 
using the ab initio LCAO-Hartree-Fock calculation for an ionized 
Li2S crystal by Azavant & Lichanot (1993). Curves denoted by S-W 
were obtained for S 2- by a Hartree-Fock calculation considering 
Watson-sphere potential models. R denotes the radius of the 
potential in A. 
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Table 1. Comparison of the Uhk I (a-2) derived 
experimentally and from other methods 

All Uut values in this table include temperature factors which were 
estimated by Cooper et al. (1973) and do not include the factor (2rr) 2. 

DT* 
for neutral IT:I: Present 

Reflection states ALt  for i< = 0.91 experiment§ 

200 0.003562 0.004961 0.004355 0.004363 (196) 
[139%] [122.3%] [122.5 (53)%1 

220 0.037945 0.037900 0.038113 0.03822 (12) 
[99.9%] [100.4%] [100.7 (3)%] 

420 0.004326 0.004277 0.004148 
[98.9%] [95.9%] 

* Calculated from the neutral scattering factor of Zn and S from the 
relativistic Hartree-Fock calculation, Doyle & Turner (1968). t The 
scattering factor of Zn 2+ is from Doyle & Turner (1968) and that of 
S 2- is from Azavant & Lichanot (1993) using a LCAO-Hartree-Fock 
calculation and is labelled A-L in Fig. 12. :~ The scattering factor of 
Zn 2÷ is from Doyle & Turner (1968) and that of S 2- is calculated from 
the orbital scattering factors of Mann in International Tables for X-ray 
Crystallography (1974), assuming r = 0.91 using the Coppens model 
(Coppens et al., 1979; Coppens, 1993). §Present experimental 
results. U220 was obtained from the critical-voltage effect of the 242 
reflection at the [111] zone axis. U20 o was obtained assuming that U60o 
was that of the neutral state and that for U420 was 0.5% smaller than 
the value for the neutral state. Quantities in brackets denote percentage 
values normalized using DT neutral states. 

The curves in Fig. 12 show large deviations for lower 
scattering angles but they agree with the neutral state 
for higher scattering angles. 

In Table 1, the calculated values for U200, U220, U420 
and the experimentally derived values for U20 o, U220 are 
shown. The first column gives values for neutral free 
atoms from Doyle & Turner (1968). In the second 
column, the ionized state Zn 2+ is from Doyle & Turner 
(1968) and that for S 2- is from Azavant & Lichanot 
(1993). The third and the fourth columns were obtained 
by assuming r = 0.91, for S 2- in the model by Coppens 
et al. (1979) and Coppens (1993), and Zn 2+ is from 
Doyle & Turner (1967). The last column contains the 
analysis results of the experiments. U20o was obtained 
from the critical-voltage effect involving the 600 
reflection in the [001] zone axis. In the analysis of 
this critical-voltage effect, _U220 obtained from the 
critical-voltage effect of the 242 reflection at the [111] 
zone axis was used. Also, a value of U42o assumed to be 
0.5% smaller than that for the neutral state was 
considered. From the experimental result for U2o o, 
the parameter of Coppens et al. (1979) was derived 
to be r = 0.910 (6) for the outer electrons of sulfur. 
Although better agreement for U200 is obtained with 
K=0.900(10) ,  we may conclude that the simple 
spherical model comprising an expansion of the outer- 
electron orbits can explain the measured low-angle 
structure factors with the value of I< being in the range 
0.90 to 0.91. As seen in Fig. 12, the curve denoted by 
A-L has almost the same shape as the curve for 
r - - 0 . 9 1 ,  but the latter is slightly larger. The curves 
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Table 2. Comparison with the band-structure calcula- 
tions in the form of  X-ray structure factors 

All structure factors in this table do not include the temperature 
factors. 

DT* 
for neutral Present WK§ BZ¶ BZ** 

Reflection states ALt experiment~: LCGO PVMB PVMB 
200 13.32 13.14 13.17 (4) 13.06 13.01 13.04 
220 31.76 31.78 31.66 (4) 31.54 31.47 31.48 
400 26.50 26.60 - 26.35 26.28 26.26 
420 9.316 9.377 - 9.24 9.19 9.21 

*, tSame as the footnotes */f in Table 1. ~ To eliminate the 
temperature factors, the values obtained by Cooper et al. (1973) were 
used. Conversion from the scattering factor for electrons to that for 
X-rays was carried out using the scattering factor of Zn 2+ obtained by 
Doyle & Turner (1968). §Linear combination of Gaussian orbital 
(LCGO) method using the local-density-theory of Wang & Klein 
(1981). ¶ Potential-variation mixed-basis (PVMB) method using the 
local-density theory by Bendt & Zunger (1982). **Potential- 
variation mixed-basis (PVMB) method using the local-density theory 
by Bernard & Zunger (1987). 

denoted by S-W do not agree well with the curve for 
K = 0.91. A change in the Watson-sphere radius may 
give better agreement. Note that the scattering-factor 
curves in Fig. 12 for the deviation from the neutral state 
for the two ions show appreciable values at the 220 
position. However, they tend to cancel as is confirmed 
experimentally by the value of [/22o being only slightly 
different from that for neutral atoms. 

In Table 2, the structure factors obtained from 
various band-structure calculations based on local- 
density theory are shown in the form of X-ray structure 
factors. The experimentally obtained scattering factors 
for electrons were converted to the scattering factors for 
X-rays using the Mott relation. The temperature factors 
were eliminated from the experimentally obtained 
structure-factor values by assuming the temperature 
factors of Cooper et al. (1973) and the scattering factor 
for Zn 2+ of Doyle & Turner (1968). These assumptions 
appear to introduce no significant errors. The structure 
factors estimated from experiment and those obtained 
from Azavant & Lichanot (1993) are located midway 
between the results of the band-structure calculations 
and the neutral-state calculation. Although the values 
obtained by the band-structure calculations agree with 
each other, they seem to deviate from the experimen- 
tally derived values. 

In the derivation of the /-/2oo value, we assumed that 
the value of U420 for the ionized state was 0.5 % smaller 
than that of the neutral state. If we assume the neutral- 
state value for the 420 reflection, a slightly smaller 
value for the X-ray structure factor of the 200 reflection 
will be given. On the other hand, if we assume a greater 
deviation in the value from the neutral state for the 
structure factor of the 420 reflection than that used for 
the present derivation, the X-ray structure factor of the 
200 reflection will be increased towards that of the 

netural states. The experimentally derived value for the 
200 structure factor will deviate from the values 
obtained by theoretical band-structure calculations 
shown in Table 2. 

With various diffraction techniques, a small peak in 
the bonding charge density at a position between the two 
constituent atoms in binary semiconductor compounds 
has been detected (e.g. Demarco & Weiss, 1964; 
Collela, 1971; Bilderback & Collela, 1976; Kobayashi, 
Takama & Sato, 1988; Kobayashi, Takama, Tohno & 
Sato, 1988; Zuo, Spence & O'Keeffe, 1988; Spence, 
1989). This bonding-charge peak, which can be 
expressed using a parameter ps(r) by Garcia & Cohen 
(1993), influences the structure factor for the 400 
reflection. The disagreements in Table 2 of the results 
obtained by various procedures for the 400 reflection 
can be attributed to this. However, the structure factors 
for the 200, 220, 420 and 600 reflections, which we 
used in the analysis of the critical voltage for the 600 
reflection at the [001] zone axis, are not sensitive to this 
bonding-charge distribution. The structure factor for the 
200 reflection depends on the total charge transfer 
between the two constituent atoms, which can be 
described by a parameter p,4(r) introduced by Garcia 
& Cohen (1993). Thus, the spherically symmetric 
model around the constituent atoms for the scattering 
factors can be used effectively in the present analysis. 

6. Summary and conclusions 

This study shows that even in a non-centrosymmetric 
structure several many-beam dyamical effects occur 
that are related to accidental Bloch-wave degeneracies. 
These effects are due to mirror or rotation symmetries 
in the three-dimensional or in the two-dimensional 
projected structure. At non-centrosymmetric projec- 
tions, intensity anomalies similar to the critical-voltage 
effect occur. The second Bethe approximation was used 
to discuss this effect. 

The observed accidental degeneracies of ZnS fell into 
three categories: those that could be used to derive 
accurate structure factors; those for which the structure 
factors could not be obtained with sufficient precision 
(high-voltage microscopes may solve this problem); and 
those expected to yield more information after further 
analysis. A series of the critical-voltage effects 
observed in the 260 reflection in the [001] projection 
and pseudo-critical-voltage effects in the non-centro- 
symmetric projections belong to the last category. As a 
result of the analysis of the critical-voltage effect 
observed in the 242 reflection at the [111] projection 
and that observed in the 600 reflection at the [001] 
projection, the structure factors for the 220 and 200 
reflections, which have a large uncertainty in their 
scattering factors due to ionization, were derived. The 
analysis results were compared with various theoretical 
calculations. 
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APPENDIX A 

From our previous work (Matsuhata & Gjonnes, 1994), 
the four-beam matrix can be rewritten as follows. 

IA - 3/11 = 0, 

XFZ + p X  + qY  + tZ + C = 0 ,  

with 

X = 2Ks2 - V + (U21U12/Y) 

Y = 2Ks 3 - 3/+ (U31UI3/Y) 

Z = 2Ks 4 - y + (U41Ul4/Y ) 

p = - [ 0 3 1 U 1 4 ( 1 / y  -3 L 043/013041)] x c.c. 

q- -[U41UI2(1/y -l- U24/UI4U21)] x c.c. 

t - -  - - [021U13(1/ )  / + U32/U12U31)] × c.c. 

C = U12U21U13U31U14U41(1/]/+ U43/U13U41 ) 

× (I/v + U24/UI4U21)(I/y + U32/UI2U31) + c.c. 

If C 2+4pqt=0 and X=-C/2p, Y=-C/2q, 
Z =-C/2t, the degeneracy occurs. If a crystal has 
centrosymmetry, the four-dimensional matrix A (real 
and symmetric) always satisfies C 2 + 4pqt = 0. Even 
when a crystal is non-centrosymmetric, the Hennitian 
four-dimensional matrix A can satisfy C 2 + 4pqt = 0 if 
the crystal has a mirror plane or a rotation axis of even 
order. 
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